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# 2009 International Union of Crystallography

Printed in Singapore – all rights reserved

On a minimum tetrahedron in a three-dimensional
lattice. Part I. Lattices with a shortest basis fulfilling
b � c � 0, a � c � 0, a � b � 0

B. Gruber‡
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The problem of a representative body of a three-dimensional lattice is

considered. The cell fulfilling a + b + c = min is clearly not unique: even five

mutually non-congruent such cells can exist in some lattices [Gruber (1973).

Acta Cryst. A29, 433–440]. The idea that this number could be reduced by

replacing the cell (i.e. a parallelepiped) by another, possibly more suitable,

geometrical object is considered. For this object a lattice tetrahedron fulfilling

the condition a + b + c + d + e + f = min is chosen, a to f being the lengths of its

edges. It is called the minitetrahedron of the lattice. In this article, the problem is

solved in detail for lattices that can be generated by a basis a, b, c fulfilling |a| +

|b| + |c| = min, b � c � 0, a � c � 0, a � b � 0. It turns out that in this case not more

than two mutually non-congruent minitetrahedra can exist. Necessary and

sufficient conditions for the uniqueness are found. They have the form of

inequalities between the lengths of the edges and diagonals of the parallelepiped

formed by the vectors a, b, c. A procedure for determining all minitetrahedra of

a given lattice is shown. Some results are illustrated graphically and all

assertions are proved mathematically.

1. Crystallographic kernel

1.1. Introduction

This paper was incited by the problem of a unique repre-

sentation of a lattice. For this purpose the so-called Niggli cell

is usually used. It is characterized by the condition

aþ bþ c ¼ min ð1Þ

and a system, say S, of rather complicated inequalities origi-

nating in algebra (Eisenstein, 1851; Niggli, 1928; International

Tables for Crystallography, 2002). Condition (1) is simple and

very natural; however, it does not guarantee the uniqueness of

the cell: as many as five different cells with this property may

exist in some lattices (Gruber, 1973). For this purpose there

serves the system S which chooses from the cells selected by

the minimum condition (1) the final unique cell.

Thus the procedure consists of two steps. This indirectness is

not exactly welcome. One of the aims of this paper is to lower

the number of bodies admitted by the minimum condition from

which the representative body originates.

Our idea lies in the observation that not all eight vertices of

a primitive cell are necessary for determining the lattice: only

four of them suffice unless they lie in a plane. Thus a tetra-

hedron is equally justified as a representative body of a lattice.

Now a tetrahedron can be completed in four different ways

into a cell that determines the same lattice as the tetrahedron.

Thus to give one tetrahedron means the same as to give four

cells: the tetrahedron covers all of them. This suggests a way of

lowering the number of bodies admitted by the minimum

condition: instead of with cells with the shortest edges we shall

work with tetrahedra with the shortest edges.

The tetrahedra may also be of interest from other aspects.

For example, to define a lattice by means of a tetrahedron

means to define it in a ‘homogeneous’ way, that is by six

straight segments instead of by three straight segments and

three angles as for the cells. Moreover, the relations between

the shape of the minimum tetrahedron and, e.g., the Bravais

type of the lattice may reveal interesting information.

From the mathematical point of view in the ‘cell case’ we

are looking for three shortest lattice vectors on the condition

that they are linearly independent, whereas in the ‘tetra-

hedron case’ we are looking for six shortest lattice vectors on

the condition that they form a tetrahedron. In the latter case

we can therefore expect greater formal complications. This

proved to be true.

Finally the author must confess that he became during the

work more and more fascinated by the tetrahedron as a body

itself. After all, it is the simplest possible three-dimensional

body being determined by the smallest possible number of

quite arbitrary points.
‡ Retired. Formerly at the Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic.



1.2. Notions, conventions and definitions

We say that the tetrahedron T is a lattice tetrahedron of the

lattice L if its vertices are lattice points of L. Let the edges of a

tetrahedron T be denoted e1, ..., e6. Then we define

�ðTÞ :¼
P6

i¼1

ei;

where ei means the length of the edge ei. More generally we

define

��ðTÞ :¼
P6

i¼1

e�i

for any real � > 0.

Definition 1.1. We say that a lattice tetrahedron T of the lattice

L is a minitetrahedron of L if �(T)� �(T 0) holds for any lattice

tetrahedron T 0 of L.

The set of all minitetrahedra of L is denoted M. On this set

M we define a decomposition D into classes of mutually

congruent minitetrahedra. We introduce the following

formulations.

Definitions 1.2.

(i) We say that ‘the minitetrahedron of the lattice L is

unique’ if D consists of one class only.

(ii) In the opposite case we say that ‘the minitetrahedron of

L is ambiguous’.

(iii) In particular we say that ‘the minitetrahedron of L is k-

times (k > 1) ambiguous’ if D consists exactly of k classes.

Our main concern in this paper is the uniqueness or ambi-

guity of the minitetrahedron of a given lattice.

If p, q, r are linearly independent lattice vectors of the

lattice L then the symbol hp, q, ri denotes the set of all

tetrahedra with the vertices

O; Oþ �p; Oþ �q; Oþ �r

where |�| = 1 and O ranges over all lattice points of L. We call

such a set an abstract tetrahedron. The symbol hp, q, ri is not

unique; for example

hp; q; ri ¼ hq;�pþ q; q� ri

etc. We usually choose the symbol that seems to us the

simplest.

Since all tetrahedra T from an abstract tetrahedron hp, q, ri

are congruent, we can transfer many properties of T directly to

this abstract tetrahedron. We shall, e.g., speak about the

congruence between a tetrahedron T and an abstract tetra-

hedron hp, q, ri etc. If hp, q, ri contains a minitetrahedron then

it is a part of a class of the decomposition D.

It remains to choose the starting point of our investigations

and the frame in terms of which our findings will be stated. It

seems natural to choose for this purpose a basis with the

shortest vectors, that is a basis a, b, c fulfilling

jaj þ jbj þ jcj � ja0j þ jb0j þ jc0j

for any basis a0, b0, c0 of L. Let us call it a minimum basis. It can

be transformed – if necessary – by a mere change of direction

of one of its vectors into such a form that either

b � c � 0; a � c � 0; a � b � 0 ð2Þ

or

b � c< 0; a � c< 0; a � b< 0: ð3Þ

In this paper, with the subtitle Part I, we confine ourselves

solely (with the exception of x3) to lattices that have at least

one minimum basis fulfilling (2), leaving the remaining lattices

to Part II. This division is not only formal. The two cases differ

deeply not only in their results but also in the methods and the

whole geometrical image.

To simplify things we further normalize the notation to

jaj � jbj � jcj: ð4Þ

The first question now is how to recognize whether a basis a, b,

c fulfilling (2) and (4) is a minimum basis. This occurs if and

only if the inequalities

2b � c � b2; 2a � c � a2; 2a � b � a2
ð5Þ

hold (see e.g. Gruber, 1997).

The second question is how to find such a basis (if it exists)

when an arbitrary basis of the lattice L is known. Here the

algorithm by Křivý & Gruber (1976) (K&G), especially in the

form given by Gruber (1997), can be applied. Since our

normalization (2) and (3) differs from that used in Interna-

tional Tables for Crystallography (IT) and the algorithm by

K&G1 the answer is as follows:

Proposition 1.3. Let a0, b0, c0 be the vectors in the output of the

K&G algorithm. Then the following is true:

(i) The results of the present paper are applicable to the

lattice if and only if

ðb0 � c0Þ ða0 � c0Þ ða0 � b0Þ � 0:

{The crux is this. There exist lattices with two minimum bases,

one fulfilling (2) and the other (3). [E.g. the lattice generated

by the vectors a, b, c which obey a = b = c = 4b � c = 2a � c =

2a � b = 1 has – besides the minimum basis a, b, c fulfilling (2) –

also a minimum basis a0 = b, b0 = a � b, c0 = c with b0 � c0 < 0,

a0 � c0 < 0, a0 � b0 < 0.] Then we have to show that the basis a0, b0,

c0 cannot appear in the output of the K&G algorithm. This

follows from a detailed analysis in Gruber (1978).}

(ii) If it is so, at least one of the triplets

a0; b0; c0; �a0; b0; c0; a0;�b0; c0; a0; b0;�c0

– re-denoted as a, b, c – fulfils the inequalities (2), (4) and (5).

Let us conclude this section by the following

General assumption 1.4. From this point on until the end of the

paper (apart from x3) it is assumed that L is a three-

dimensional lattice and a, b, c is one of its bases fulfilling
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we would unnecessarily lose the lattices with (b � c)(a � c)(a � b) = 0.



jaj � jbj � jcj;

0 � 2b � c � b2; 0 � 2a � c � a2; 0 � 2a � b � a2:

This convention will be used throughout the paper without the

reader being reminded.

1.3. Main results

Theorem 1.5. The minitetrahedron of the lattice L is either

unique or twice ambiguous.

Theorem 1.6. The minitetrahedron of the lattice L is twice

ambiguous if and only if one of the three following conditions

is fulfilled:

ðiÞ ja� bj ¼ jaþ b� cj; �> 60�; �> 60�;
ðiiÞ ja� cj ¼ ja� bþ cj; jcj< jb� cj; � > 60�;
ðiiiÞ jb� cj ¼ j � aþ bþ cj; jbj< ja� bj; jcj< ja� cj:

The particulars are given in Table 1.

These two theorems are the kernel of this paper. The

second theorem is illustrated in Fig. 1. From Table 1 two easy

consequences follow.

Proposition 1.7. If T, T 0 are two non-congruent minitetrahedra

of L, then one of them is congruent with ha, b, ci.

Proposition 1.8. If T is a minitetrahedron of L then it is

congruent with one of the following four abstract tetrahedra:

ha; b; ci; ha; b; a� ci; ha; b; b� ci; ha; c;�bþ ci:

Thus to find the shapes of all minitetrahedra of L it is

sufficient to compare the shapes of four lattice tetrahedra (Fig.

2). (For this purpose it may be advantageous to use Theorem

1.10 with � = 2.)

Theorem 1.9. Let T and T 0 be minitetrahedra of L. Then their

edges may be denoted

e1; . . . ; e6 and e01; . . . ; e06

in such a way that

ei ¼ e0i for i ¼ 1; . . . ; 6:

Thus two minitetrahedra of L agree not only in the sum of

lengths of their edges but also in the lengths of individual

edges.

Theorem 1.10. Let T be a lattice tetrahedron of the lattice L

and � > 0 a real number. Then T is a minitetrahedron of L if

and only if

��ðTÞ � ��ðT
0
Þ

is true for any lattice tetrahedron T 0.

Example 1.11. Let the lattice L be generated by the vectors a,

b, c fulfilling

a2 b2 c2

2b � c 2a � c 2a � b

� �
¼

3 4 4

4 1 3

� �
:

Then the condition (1) offers five mutually non-congruent

‘minicells’:2

½a; b; c�; ½a; b; b� c�; ½a;�c;�aþ b�;

½a;�c;�bþ c�; ½a;�aþ b;�bþ c�;

whereas the condition

aþ bþ cþ dþ eþ f ¼ min ð6Þ

leads directly to the unique minitetrahedron ha; b; b� ci

(according to Assumption 1.4, Theorem 1.6 and the fourth row

of Table 1).

Theorem 1.12. Let the lattice L be of the Bravais type xY.

Then the following is true:

(i) If xY is one of the Bravais types

cP; cF; tP; oP; oC; hP; mP

then the minitetrahedron of L is unique.

(ii) If xY is one of the Bravais types

oI; mI; aP

then there exists a lattice of the type xY which has an

ambiguous minitetrahedron (see the following Examples

1.13).

(iii) In the remaining cases

cI; tI; oF; hR

the decision cannot yet be made (i.e. before Part II is

completed).

Examples 1.13. Let the lattice L be given by its body-centred

cell [a0; b0; c0] fulfilling

a0 ¼ 3; b0 ¼ 4; c0 ¼ 5
ffiffiffi
3
p
; �0 ¼ �0 ¼ � 0 ¼ 90�

ðor a0 ¼ 2; b0 ¼ c0 ¼
ffiffiffi
7
p
; �0 ¼ � 0 ¼ 90�; 2

ffiffiffi
7
p

cos �0 ¼ �1Þ:
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Table 1
Uniqueness, ambiguity and shapes of the minitetrahedra.

The symbol # separates those that are not congruent.

Conditions Shapes

|a � b| > |a + b � c| ha, c, �b + ci
|a � b| = |a + b � c|, � > 60�, � > 60� ha, b, ci # ha, c, �b + ci
|a � b| = |a + b � c|,

either � � 60� or � � 60�
ha, b, ci

|a � c| > |a � b + c| ha, b, b � ci
|a � c| = |a � b + c|, |c| < |b � c|, � > 60� ha, b, ci # ha, b, b � ci
|a � c| = |a � b + c|,

either |c| � |b � c| or � � 60�
ha, b, ci

|b � c| > |�a + b + c| ha, b, a � ci
|b � c| = |�a + b + c|,

|b| < |a � b|, |c| < |a � c|
ha, b, ci # ha, b, a � ci

|b � c| = |�a + b + c|,
either |b| � |a � b| or |c| � |a � c|

ha, b, ci

|a � b| < |a + b � c|, |a � c| < |a � b + c|,
|b � c| < |�a + b + c|

ha, b, ci

2 From these cells the unique Niggli cell must be selected by Eisenstein’s rules
[see e.g. IT (2002), x9.2.2].



Then L belongs to the Bravais type oI (or mI) [being ‘acci-

dentally’ not of a higher symmetry; see Table 9.3.4.1 in IT

(2002)] and its minitetrahedron is ambiguous.

Hint. Put

a :¼ a0; b :¼ b0; 2c :¼ a0 þ b0 þ c0

ðor a :¼ a0; 2b :¼ a0 þ b0 þ c0; 2c :¼ a0 � b0 þ c0Þ

and construct the minitetrahedra

ha; b; ci and ha; c;�bþ ci

ðor ha; b; ci and ha; b; a� ciÞ:

2. Proofs

2.1. Further notions and notations

Notation 2.1. The following notations will be used from now

on:

A :¼ a2; B :¼ b2; C :¼ c2;

x :¼ 2b � c; y :¼ 2a � c; z :¼ 2a � b;

� :¼ ½x; y; z�;

� :¼ f½u; v;w�; 0 � u � B; 0 � v � A; 0 � w � Ag;

r :¼ x=A; s :¼ y=A; t :¼ z=A;

� :¼ B=A; 	 :¼ C=A;

V :¼ m2
þ �n2

þ 	p2
þ rnpþ smpþ tmnþ !;

ðm; n; p integers; ! realÞ:

Consequently the following relations hold:

0<A � B � C;

0 � x � B; 0 � y � A; 0 � z � A;

0 � r � �; 0 � s � 1; 0 � t � 1;

1 � � � 	;

� ¼ A½r; s; t�:

Definition 2.2. Let

s :¼ maþ nbþ pc ð7Þ

be a lattice vector of the lattice L.

(i) We say that s is

an a-vector if m � 1; n ¼ 0; p ¼ 0;

a b-vector if n � 1; p ¼ 0;

a c-vector if p � 1:

(ii) If s is a c-vector it is said to be

a red c-vector if n = 0, p = 1; and to be

a green c-vector if either n 6¼ 0 or p > 1 (all with respect to

the basis a, b, c).

Thus the red c-vectors and the green c-vectors form a division

of the c-vectors into two classes.

Notation 2.3.

(i) The set of all green c-vectors (7) is denoted G.

(ii) The set of all green c-vectors (7) fulfilling max (|m|, |n|,

|p|) � 2 is denoted G2.

(iii) In an analogous way the symbols

A;A2; B;B2; C;C2 and R;R2

are defined for the

a-; b-; c- and red c-vectors: ð8Þ

Definition 2.4. If all green c-vectors are arranged into a

sequence

g1; g2; g3; . . . ð9Þ

in such a way that

(i) any green c-vector occurs in sequence (9) only once and

(ii)

jg1j � jg2j � jg3j � . . . ð10Þ
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Figure 2
Possible shapes of minitetrahedra.

Figure 1
Theorem 1.6 illustrated. The straight lines marked by open circles are of
the same length. The straight lines crossed by one short line, |, are shorter
than the straight lines crossed by a pair of short lines, k. Similarly, the
straight lines marked by a cross are shorter than the straight lines marked
by a pair of crosses. The angles that are explicitly marked are greater than
60�.



we say that (9) is a normal sequence of green c-vectors of the

lattice L. In a similar way normal sequences of the vectors in

(8) are introduced.

Remarks 2.5.

(i) The sequence (9) is generally not unique, unlike the

sequence (10).

(ii) If

n � 1; 1 � k1 < k2 < . . . < kn

are integers and (9) is a normal sequence of green c-vectors

then

jgnj � jgkn
j;

jg1j þ . . .þ jgnj � jgk1
j þ . . .þ jgkn

j:

Similarly for the other normal sequences.

Notations 2.6. For the sake of brevity we make the following

conventions:

(i) Instead of

jsj ¼ jtj; jsj< jtj

we shall also write

s ¼
:

t; s <
:

t:

(ii) Some frequently appearing lattice vectors will sometimes

be denoted by bold numerals 31, ..., 40 according to Table 2.

Although this way may look rather unusual, in the end it

proved quite apt. For example (see the second entry in Table

4)

b <
:

31 ¼
:

32 <
:

. . . ð11Þ

will mean that

jbj< jaþ bj ¼ j�aþ bj< jsj

for any b-vector s different from the vectors b, a + b, �a + b.

Another example:

G ¼ G2 [ f35; 36; 37; 38; 39; 40g:

Definition 2.7. Fourteen particular points will be of special

importance. They will usually be referred to as selected points.

Their notation and coordinates are given in Table 3.

They can be seen in Figs. 3, 4, 5 and 6. Eight of them, namely

J;O;�;�;�;�;�;	

are vertices of the parallelepiped �. The reasons for consid-

ering the remaining six points

F;H;M;N;P ð12Þ

as selected points are suggested in the following.

Intermezzo 2.8. General scheme of the proof. (Here we use

informal language.) It does not seem a bad idea to look for the

minitetrahedra among those lattice tetrahedra that have in

their edges all three vectors a, b, c, since these vectors are ‘as

short as possible’. We call such tetrahedra the auxiliary

tetrahedra (see further Definition 2.25, Lemma 2.26 and Table

7).

First let us suppose that the tetrahedron T 2 ha, b, ci is a

minitetrahedron of L. (This occurs, e.g., if b � c = a � c = a � b

= 0.) Then, in particular,

�ðTÞ � �ðT 0Þ ð13Þ

for any auxiliary tetrahedron T 0. Then the inequality (13)

means

ja� bj þ ja� cj þ jb� cj � jq1j þ jq2j þ jq3j

where q1, q2, q3 are linear expressions in a, b, c. This can be

written ffiffiffiffiffi
P1

p
þ

ffiffiffiffiffi
P2

p
þ

ffiffiffiffiffi
P3

p
�

ffiffiffiffiffiffi
Q1

p
þ

ffiffiffiffiffiffi
Q2

p
þ

ffiffiffiffiffiffi
Q3

p
; ð14Þ

where Pi, Qj are linear expressions in x, y, z. To deal with such

a complicated inequality generally is hopeless. However, there

exist three auxiliary abstract tetrahedra, namely3

T1 :¼ ha; b; a� ci; T2 :¼ ha; b; b� ci;

T3 :¼ ha; c;�bþ ci

such that for T 2 Ti (1 � i � 3) the inequality (14) reduces toffiffiffiffiffi
Pr

p
�

ffiffiffiffiffiffi
Qs

p
; ð15Þ
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Table 2
Brief notation of some lattice vectors.

Symbol Lattice vectors

31 a + b
32 �a + b
33 a + c
34 �a + c
35 b + c
36 �b + c
37 a + b + c
38 �a + b + c
39 a � b + c
40 �a � b + c

Table 3
Notation and coordinates of selected points.

Notation Coordinates Condition

F [A/2, A, A]
H [B, A/2, A]
J [B, A, A]
M [B, A, (A + B � C)/2] (C < A + B)
N [C � A, A, 0] (A < C < A + B)
O [0, 0, 0]
P [B, C � B, 0] (B < C < A + B)
� [0, 0, A]
� [0, A, A]
� [B, 0, A]
� [0, A, 0]
� [B, 0, 0]

 [B � A, 0, A] (A < B)
	 [B, A, 0]

3 In fact, according to Table 7 T1 = 56, T2 = 59, T3 = 63.



the numbers r, s being dependent on i. This inequality can be

written

Li � 0; ð16Þ

where Li is a linear function in x, y, z. The intersection of the

plane Li = 0 with the parallelepiped � is mostly4 a triangle

whose vertices are selected points (see Figs. 6, 3, 4 and 5).

Finally denote �i (1� i� 3) the set of points from � for which

Li � 0 and �0 the set of those points from � for which L1 � 0,

L2 � 0, L3 � 0.

Summarizing we can say: If T 2 ha, b, ci is a minitetrahedron

of L then � 2 �0. As we shall show, this assertion can be

inverted: If � 2 �0 then T 2 ha, b, ci is a minitetrahedron; that

is, the inequality (13) holds not only for T 0 2 Ti (1 � i � 3) but

for any lattice tetrahedron T 0 of L.

But this is not enough: If � 2�i (i = 1, 2, 3) then T 2 Ti is a

minitetrahedron of L. This is much more than we were justified

to expect. All these assertions, of course, have to be rigorously

proved.

Viewing the proof as a whole we can distinguish five steps:

(i) To find – for any point � 2 � – all suitable ‘as short as

possible’ lattice vectors in a number sufficient for constructing

all minitetrahedra (xx2.3 and 2.4).

(ii) To ascertain all possible distributions of the a-, b- and c-

vectors along the edges of an arbitrary lattice tetrahedron

(x2.5).

(iii) To find – for any � 2 � – one minitetrahedron (x2.6).

(iv) To find – for any � 2 � – all minitetrahedra and divide

them into classes of mutually congruent ones (x2.7).

(v) According to the number of these classes to decide

between the uniqueness and ambiguity of the minitetrahedron

of the lattice L (x2.8).

2.2. Auxiliary inequalities

Proposition 2.9. Let a 6¼ 0, K > 0, 
1 < 
2, denote

Pð
Þ :¼ a
2 þ b
 þ c; D :¼ b2 � 4ac; E :¼ 2jajK � jbj:

[The expression D is usually called the discriminant of the

polynomial Pð
Þ.] Then the following is true:

(i) if D < 0 then

ðsgn aÞ Pð
Þ> 0 ð17Þ

for any 
;
(ii) if sgn P(
1) = sgn P(
2) = �sgn a then

sgn Pð
Þ ¼ sgn Pð
1Þ

for any 
 fulfilling 
1 � 
 � 
2;

(iii) if D � 0, E � 0, E2 > D then (17) holds for |
| � K.

Proof. Points (i) and (ii) are known from algebra. In point (iii)

assume first a > 0. We have to prove that the zero points of the

polynomial P(
) lie in the open interval (�K, K). This means

�2aK< �b�
ffiffiffiffi
D
p

; �bþ
ffiffiffiffi
D
p

< 2aK;

which can be written ffiffiffiffi
D
p

< 2aK � jbj ¼ E:

This is equivalent to D < E2 for E � 0. Secondly, if a < 0 we

apply what has been just proved to the polynomial �P(
).

Proposition 2.10. Let p � 2, denote

v :¼ t2 � 4�;

Q :¼ v!þ 4ðr2
þ s2�� rst þ v	Þ:

Then the following is true: If

v< 0; !< 0; Q< 0; ð18Þ

then

V > 0: ð19Þ

Proof. Denote W: = r2 + s2� � rst + v	 so that Q = v! + 4W.

From Q < 0, v! > 0 it follows W < 0. The inequality Q < 0

means 4 > �v!/W so that also p2 > �v!/W and consequently

U :¼ p2W þ v!< 0: ð20Þ

But 16U is the discriminant of the expression
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Figure 3
The set of all ambiguity points for |a � b| = |a + b � c|, � > 60�, � > 60�.

4 I.e. for i = 1, 2 and i = 3, C < A + B. In the remaining alternatives it is either
the point 	 or the empty set.



R :¼ vn2
þ 2pnðst � 2rÞ þ s2p2

� 4	p2
� 4!

taken as a quadratic function of the variable n. Thus from (20)

and v < 0 it follows that R < 0 according to Proposition 2.9

point (i). However, R itself is the discriminant of the expres-

sion V taken as a quadratic function of m. Applying Propo-

sition 2.9 (i) once more we get finally (19).

Proposition 2.11. Let p = 1, |n| � 2, denote

v :¼ t2
� 4�;

Q :¼ ðst � 2rÞ2 � vðs2 � 4	� 4!Þ;

R :¼ jvj � j0:5st � rj

and assume

v< 0: ð21Þ

Then the following is true: if either

Q< 0

or

Q � 0; R � 0; 4R2 >Q ð22Þ

then

V> 0:

Proof. We apply Proposition 2.9 to the expression

W :¼ vn2
þ 2ðst � 2rÞnþ s2

� 4	� 4!

taken as a function of the variable n. Putting

a :¼ v; b :¼ 2ðst � 2rÞ; c :¼ s2 � 4	� 4!; K ¼ 2;
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Figure 6
The ‘truncated’ parallelepiped �0 and the three bodies �1, �2, �3 from
Intermezzo 2.8 on the condition A < B < C < A + B.

Figure 5
The set of all ambiguity points for |b � c| = |�a + b + c|, |b| < |a � b|,
|c| < |a � c|.

Figure 4
The set of all ambiguity points for |a� c| = |a� b + c|, |c| < |b� c|, � > 60�.



we get

D ¼ 4Q; E ¼ 4R

and Proposition 2.9 gives

W< 0 for jnj � 2:

But W is the discriminant of V (with p = 1) taken as a function

of m. Thus V has no zero points and is therefore positive. QED

Proposition 2.12. Let p = 1, |n| = 1, |m| � 2, denote

v :¼ sþ tn;

Q :¼ v2 � 4ð�þ 	þ rnþ !Þ;

R :¼ 4� jvj:

Then the following is true: if either

Q< 0 ð23Þ

or

Q � 0; R � 0; R2 >Q ð24Þ

then

V> 0:

Proof. Here explicitly

V :¼ m2
þ ðsþ tnÞmþ �þ 	þ rnþ !:

We apply Proposition 2.9 getting thus D = Q, E = R.

Definition 2.13.

(i) If � 2 {F, J, N, O, �, �, �, 
, 	} put ! = r � � � 	.

(ii) If � = � put ! = �r + s + t � 1 � � � 	.

(iii) If � 2 {H, �} put ! = r � s + t � 1 � � � 	.

(iv) If � 2 {M, P} put ! = r + s � t � 1 � � � 	.

Proposition 2.14. Let � be one of the 14 selected points of

Table 3. Determine ! according to Definition 2.13. Let either

p � 2 ð25Þ

or

p ¼ 1; jnj � 2 ð26Þ

or

p ¼ 1; jnj ¼ 1; jmj � 2: ð27Þ

Then

V> 0:

Proof. Most complicated is the case � = M. We shall

therefore perform it in detail. From Table 3 and Definition

2.13 (iv) it follows that

r ¼ �; s ¼ 1; t ¼ ð�� 	þ 1Þ=2; ! ¼ �ð�þ 	þ 1Þ=2:

The condition C < A + B means that we are interested only in

	 2 J: = {
; � � 
 < � + 1}.

First let p � 2. We want to apply Proposition 2.10 and

therefore verify its assumptions (18). We calculate

4vð	Þ ¼ 	2
� 2ð�þ 1Þ	þ �2

� 14�þ 1; ð28Þ

8Qð	Þ ¼ 7	3
� 15ð�þ 1Þ	2

þ ð9�2
� 78�þ 8Þ � �3

þ 29�2 þ 29�� 1: ð29Þ

From the inequalities

vð�Þ< 0; vð�þ 1Þ< 0

it follows according to Proposition 2.9 (ii) that

vð	Þ< 0 for 	 2 J:

The second inequality ! < 0 in (18) is clear. So it remains to

prove Q < 0. From (29) we get after some algebra

Q0ð�Þ< 0; Q0ð�þ 1Þ< 0

and – applying Proposition 2.9 (ii) again –

Q0ð	Þ< 0 for 	 2 J:

Thus the function 8Q(	) decreases in J from the initial value

8Qð�Þ ¼ �64�2
þ 37�� 1; ð30Þ

which is negative. [It is sufficient to apply Proposition 2.9 (iii)

to the polynomial in (30) with K = 1.] Thus all inequalities in

(18) are correct and Proposition 2.10 may be used.

Secondly we assume (26) and apply Proposition 2.11. The

expression for 4v(	) is identical with (28) so that (21) holds.

Further

2Qð	Þ ¼ 	3 � 3ð�þ 1Þ	2 þ ð3�2 � 6�þ 3Þ	� �3

þ 17�2
þ 17�� 1:

From

Q0ð�Þ< 0; Q0ð�þ 1Þ< 0

it follows that

Q0ð	Þ< 0 for 	 2 J;

so that Q(	) decreases to the positive value Q(� + 1). Thus the

first inequality in (22) is fulfilled. As far as the second is

concerned we get

4Rð	Þ ¼ �	2 þ 2ð�þ 1Þ	� �2 þ 11�

with

Rð�Þ> 0; Rð�þ 1Þ> 0;

which is sufficient for our purposes. 4R2 > Q remains. We shall

write it as

Wð	Þ> 0 for 	 2 J

with

Wð	Þ :¼ 	4 � 4ð�þ 1Þ	3 þ ð6�2 � 12�þ 7Þ	2

þ ð�4�3
þ 36�2

þ 34�� 6Þ	þ �4
� 20�3

þ 87�2 � 34�þ 2:

Then W00(	) is a polynomial of the second degree fulfilling

W 00ð�Þ< 0; W 00ð�þ 1Þ< 0;

so that
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W 00ð	Þ< 0 for 	 2 J:

Therefore W0(	) decreases in J to the value

W 0ð�þ 1Þ ¼ 0;

being thus positive in J. Consequently W(	) increases in J

from the value

Wð�Þ ¼ 2ð64�2 � 20�þ 1Þ; ð31Þ

which is positive. [Apply Proposition 2.9 (iii) to the poly-

nomial in (31) and put K = 1.] Thus all inequalities in (22) are

fulfilled and Proposition 2.11 may be applied.

Finally there remains the case of (27) and Proposition 2.12.

If n = 1 only condition (23) is to be verified. If n = �1 we

have to check three inequalities in (24). Here we remember

the relation � � 	 < � + 1. Thus for � = M our proof is

completed.

For the remaining 13 selected points from Table 3 the proofs

are much easier.

Lemma 2.15.

(i) If � 2 {F, J, N, O, �, �, �, 
, 	} then 36 <
:

G2 (meaning

that |�b + c| < |r| for any r 2 G2).

(ii) If � = � then 38 <
:

G2.

(iii) If � 2 {H, �} then 39 <
:

G2.

(iv) If � 2 {M, P} then 40 <
:

G2.

Proof. Let us take again � = M. We have to prove

j40j< jrj for r 2 G2;

that is

j� a� bþ cj< jmaþ nbþ pcj

if either (25) or (26) or (27) is true. However, the last

inequality is equivalent to V > 0 with the value

! = r + s � t � 1 � � � 	. Now we use Proposition 2.14 and

Definition 2.13.

With the remaining selected points it is analogous.

Lemma 2.16. If � 2 � then 32 <
:

B2.

Proof. We have to prove

ð�aþ bÞ2 < ðmaþ nbÞ2 ð32Þ

for either

n � 2 ð33Þ

or

n ¼ 1; jmj � 2: ð34Þ

The inequality (32) means

W :¼ m2
þ �n2

þ �mn� 1� �þ � > 0; ð35Þ

where �: = z/A so that 0 � � � 1. Because of the linearity it is

sufficient to prove (35) for � = 0 and � = 1. In the first case we

get

W1 :¼ m2
þ �n2

� 1� �> 0

which is true for both (33) and (34). In the second case W

reads

W2 :¼ m2
þmnþ �n2

� �:

Considering this expression as a quadratic function of m, its

discriminant is (1 � 4�)n2 + 4�.

If (33) holds it is negative because n2
� 4 > 4�/(4� � 1).

Consequently W2 has no zero points and is positive. If (34) is

true the inequality W2 > 0 is clear.

Lemma 2.17. If � 2 � then 34 <
:

R2.

Proof. We have to prove

ð�aþ cÞ2 < ðmaþ cÞ2 for jmj � 2;

that is

ðm2
� 1ÞAþ ðmþ 1Þy> 0 for jmj � 2:

As in the previous lemma it is sufficient to replace y partly by

0, partly by A. One gets m2
� 1 > 0, m2 + m > 0, which is

correct.

Remark 2.18. Lemmas 2.15, 2.16 and 2.17 were our goal in this

section.

2.3. Shortest vectors in selected points

Using the results of the preceding section we can easily

ascertain a few first members of the normal sequences of

a-vectors, b-vectors and red c-vectors in any point � of �. For

the green c-vectors we can do it, at this moment, only for the

selected points from Table 3.

The result is shown in Table 4. For example, the inequalities

(11) follow from Lemma 2.16. Or, to prove the last entry in

Table 4 we use Lemma 2.15 (iii) and the relations

36 <
:

39 ¼
:

40 <
:

35; 40 <
:

37; 40 <
:

38

which follow directly from the coordinates of the point �.

Note that in any entry of Table 4 the last inequality (before

the three dots ...) is sharp, <
:

.

All this, however, is not sufficient for constructing the

minitetrahedra of L. We shall also have to know the mutual

relationships between the lengths of the different kinds of

vectors which appear (i.e. between the a-vectors and b-vectors

etc.) These relations follow without great effort from the

coordinates of the point �. Sometimes, however, the

inequalities

A � B � C; C � Aþ B and C � Aþ B

must be separated into particular cases according to whether

the symbol � means < or =.

For example, if

� ¼ H; A<B ¼ C ð36Þ

Table 4 gives

b ¼
:

32 <
:

. . . ; c <
:

34 <
:

. . . ; 36 <
:

39 <
:

. . . ð37Þ

and this must be completed by

a <
:

b ¼
:

c ¼
:

36; 34 ¼
:

39; ð38Þ
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which follows from (36). Later we shall see that the system of

inequalities (37), (38) already enables us to gain all mini-

tetrahedra of L and to decide which of them are mutually

congruent and which are not.

In this way the system (37), (38) becomes of basic impor-

tance for us and deserves to be given a special name: we call it

a clue. We shall record it in two ways. Where brevity is

desirable (e.g. in tables) we write

HðA<B ¼ CÞ : a j b 32 c 36 j 34 39: ð39Þ

The one-to-one correspondence between (37), (38) and (39) is,

we hope, apparent. Do not forget, however, that (39) also

covers the inequalities

32 <
:

. . . ; 34 <
:

. . . and 39 <
:

. . . :

Where, on the other hand, we have to deal with mutual

interactions of different clues a form of the following diagram

is more convenient:

It expresses the same as the sequence (39) and as the system of

inequalities (37), (38). Two further examples:

The clues for � ranging over all selected points from Table 3

are listed in Table 5.

2.4. Shortest vectors generally

Here the reader is reminded of the fact that General

assumption 1.4 is still kept. Let s, t be arbitrary vectors. Then

the assertion

‘the relation s ¼
:

t ðor s <
:

tÞ holds’ ð43Þ

has according to Notations 2.6 an exact definite meaning. Now

we shall generalize it a little in order to simplify further

formulations.

Definition 2.19. Let

s ¼ maþ nbþ pc; t ¼ uaþ vbþ wc ð44Þ

be lattice vectors of L, let j be an integer and �j 2 �. We say

that

‘the relation s ¼
:

t ðor s <
:

tÞ holds in the point �j’ ð45Þ

if

jmaj þ nbj þ pcjj ¼ juaj þ vbj þ wcjj ð46Þ

ðor jmaj þ nbj þ pcjj< juaj þ vbj þ wcjjÞ ð47Þ

is true for some linearly independent vectors aj, bj, cj (which

need not be lattice vectors of L) fulfilling

jajj ¼ jaj; jbjj ¼ jbj; jcjj ¼ jcj; ð48Þ

½
j; �j; �j� ¼ �j; ð49Þ

where


j ¼ 2bj � cj; �j ¼ 2aj � cj; �j ¼ 2aj � bj: ð50Þ

[Thus the assertion (43) is equivalent to the assertion (45) for

�j ¼ �.]

Lemma 2.20. Let �1, �2 2 �, let �0 lie on the open straight

segment with the end points �1, �2. Let (44) be arbitrary

lattice vectors of L. Then the following is true:

(i) if s ¼
:

t in the point �1 and s ¼
:

t in the point �2 then

s ¼
:

t in the point �0;

(ii) if (s <
:

t or s ¼
:

t) in the point �1 and s <
:

t in the point

�2 then s <
:

t in the point �0.

Proof. Let aj, bj, cj (j = 0, 1, 2) be linearly independent vectors

fulfilling (48), (49) and (50). Denote

Fð
; �; �Þ :¼ ðnp� vwÞ
 þ ðmp� uwÞ�þ ðmn� uvÞ�

þ ðm2
� u2
Þa2
þ ðn2

� v2
Þb2
þ ðp2

� w2
Þc2:

From (46) and (47) it follows that the assertion

‘s ¼
:

t ðor s <
:

tÞ holds in the point �j’

means the same as

‘Fð�jÞ ¼ 0 ðor Fð�jÞ< 0Þ’:

The implications (i), (ii) now read

‘if Fð�1Þ ¼ 0 and Fð�2Þ ¼ 0 then Fð�0Þ ¼ 0’ ð51Þ

and

‘if Fð�1Þ � 0 and Fð�2Þ< 0 then Fð�0Þ< 0’: ð52Þ

First let us suppose that at least one of the numbers

np� vw; mp� uw; mn� uv ð53Þ

is different from zero. Then F = 0 is a plane dividing the space

into two open subspaces, F < 0 and F > 0, and the implications

(51) and (52) are clear.

Secondly, let all three numbers (53) be equal to zero. Then

Fð�1Þ ¼ Fð�2Þ ¼ Fð�3Þ
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and the implications (51) and (52) are true again.

Examples 2.21. From the clues (40) and (41) we get immedi-

ately5

(H� means the open straight segment with the end points H,

�. Similarly for the triangles and tetrahedra.) Similarly we get

H
ðA<B ¼ CÞ : a j b 32 c j 36 j 34 39:

With �
 it is somewhat more complicated because of 36 <
:

32

in the point � and 32 <
:

36 in the point 
. Here Lemma 2.20

fails. However, because of linearity there exists a point, say D,

on the straight segment �
 in which 32 ¼
:

36. It would be

possible to add this point to the selected points and construct

now three diagrams, namely for the point D and the straight

segments D� and D
. Fortunately, for our purposes (i.e. the

uniqueness and ambiguity) this is not necessary and we can

deal with the straight segment �
 as a whole. Both forms of

the clue can be modified, e.g. in this transparent way:

and

�
ðA<B ¼ CÞ : a j b c j 32 	 36 j 33 34 39:

Taking the open triangle H�
 as a set of straight segments

HD we get the clues in all points of this triangle. Finally

combining these clues with the clue in the selected point �
(see Table 5) we obtain the clue in any point of the open

tetrahedron H��
.

In this way we can ascertain the clues in all points of �.

However, they are not systematically tabulated in this paper.

2.5. Distribution of the a-, b- and c-vectors along the edges of
a lattice tetrahedron

Apparently this distribution cannot be arbitrary, since the

sum of vectors lying on the border of any side of a lattice

tetrahedron can be made zero by changing the direction of at

most one of these vectors. A detailed analysis leads to the

following lemma:

Lemma 2.22. All possible distributions of the a-, b- and c-

vectors along the edges of a lattice tetrahedron are shown in

Fig. 7. They are called types and are denoted

T1; . . . ;T7: ð54Þ

However, this is not enough. We also have to distinguish

between the red c-vectors and the green c-vectors. Fortunately,

we need not know the concrete edges in which these vectors

lie; it is sufficient to know only their number. And this is

limited by the following proposition:

Proposition 2.23. In the edges of an arbitrary lattice tetra-

hedron there lie at most two red c-vectors.

Proof. Let us suppose that there are three such c-vectors. Then

they either meet in a vertex or form a ‘chain’. In neither of

these cases would the supposed ‘tetrahedron’ be a three-

dimensional body.

Applying this result to the seven types (54) we get 21

subtypes denoted

Ti0;Ti1;Ti2; ði ¼ 1; . . . ; 7Þ ð55Þ

the second subscript indicating the number of the red

c-vectors. For expressing these subtypes explicitly we intro-

duce a special notation.

Notation 2.24 (the standard description of vectors lying in the

edges of a lattice tetrahedron). Let T be an arbitrary lattice

tetrahedron.

(i) If there is an a-vector lying in an edge of T we denote it

a01.
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Table 4
The few first members of the normal sequences.

Type of vector
Condition for the
point �

First members of the
normal sequences

a-vectors a <
:

. . .

b-vectors 0 = z b <
:

31 ¼
:

32 <
:

. . .
0 < z < A b <

:
32 <

:
. . .

z = A b ¼
:

32 <
:

. . .

Red c-vectors 0 = y c <
:

33 ¼
:

34 <
:

. . .
0 < y < A c <

:
34 <

:
. . .

y = A c ¼
:

34 <
:

. . .

Green c-vectors F† 36 ¼
:

38 <
:

. . .
H 36 <

:
39 <

:
. . .

J 36 <
:

. . .
M, P 36 <

:
40 <

:
. . .

N, 	 36 ¼
:

40 <
:

. . .
O 35 ¼

:
36 <

:
. . .

� 35 ¼
:

36 ¼
:

38 ¼
:

39 <
:

. . .
� 38 <

:
. . .

�, 
 36 ¼
:

39 <
:

. . .
� 35 ¼

:
36 ¼

:
38 ¼

:
40 <

:
. . .

� 36 <
:

39 ¼
:

40 <
:

. . .

† Meaning � = F.

5 Remember that diagram (40) also contains, for example, the inequality
32 <

:
31 in the point H which with 32 ¼

:
31 in � gives 32 <

:
31 in H�.



(ii) If there are b-vectors lying in the edges of T we denote

them

b01; . . . ; b0m ð1 � m � 3Þ

in such a way that

jb01j � . . . � jb0mj:

(iii) Similarly we denote by

r01; . . . ; r0p ðjr
0
1j � . . . � jr0pj; 1 � p � 2Þ

the red c-vectors lying in the edges of T and

g01; . . . ; g0q ðjg
0
1j � . . . � jg0qj; 1 � q � 6Þ

the green c-vectors from the edges of T.

Now we are prepared to describe the subtypes (55) expli-

citly. This is done in Table 6.

In Table 2 we introduced an abbreviated notation of some

vectors by means of bold integers. Now the time has come to

do the same thing for some abstract tetrahedra (this time,

however, in bold italics). This is realized in Table 7.

The next notion has appeared already in Intermezzo 2.8.

Definition 2.25. We say that T is an auxiliary tetrahedron if in

its edges there lie the vectors a, b, c. The term extends to the

abstract tetrahedron containing T.

Lemma 2.26. In the lattice L there exist exactly 16 auxiliary

abstract tetrahedra, namely 51, ..., 66.

Proof. The vectors a, b, c either meet in one vertex of T or

form a ‘chain’ which has in its middle either the vector a, or b,

or c. Then we change the direction of these vectors in all

possible ways.

2.6. The first minitetrahedron

In this section we shall show how to ascertain whether a

given lattice tetrahedron T0 is a minitetrahedron of L. We shall

explain it in the following example.

Example 2.27. Let

� ¼ 
; A<B ¼ C: ð56Þ

The considerations in Intermezzo 2.8 or clue (42) together

with Table 7 suggest that T0 2 ha; b; ci might be a good guess.

To prove it we have to show

�ðTÞ � �ðT0Þ ð57Þ

for any lattice tetrahedron T regardless of its subtype Tij.

We modify the diagram (42) to (58) by placing the vectors

lying in the edges of T0 in square brackets:

Suppose first that the tetrahedron T is of the subtype T10. Then

in the standard description given by Notation 2.24

ja01j � jaj; jb
0
1j � jbj; jb

0
2j � j32j; ð59Þ
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Table 5
Clues in the selected points.

To make the table as concise as possible the following conventions are made: If A < B the symbol ‘:’ is replaced by |. Otherwise the symbol ‘:’ is deleted from the
table. Analogous conventions are made for B < C, ‘;’, and A + B < C, ‘,’.

Point Condition Clue

F a : b 32 ; c 34 | 36 38
H a : b 32 ; c 36 | 34 39
J a : b 32 ; c 34 36
M a : b ; c 34 36 | 32 40†
N a : b ; c 34 | 31 32 36 40†
O C < A + B a : b ; c | 31 32 ; 33 34 : 35 36
O C � A + B a : b | 31 32 , c | 33 34 : 35 36
P a : b | c 36 | 31 32 34 40†
� a : b 32 ; c | 33 34 : 35 36 38 39
� a : b 32 ; c 34 : 38
� a : b 32 ; c 36 39 | 33 34
� A = C a b c 34 | 31 32 35 36 38 40
� A < C < A + B a : b ; c 34 | 31 32 | 35 36 38 40
� C � A + B a : b | 31 32 , c 34 | 35 36 38 40
� C < A + B a : b ; c 36 | 31 32 ; 33 34 39 40
� C � A + B a : b | 31 32 , c 36 | 33 34 39 40

 a | b 32 ; c | 33 34 36 39†
	 C < A + B a : b ; c 34 36 40 | 31 32
	 C � A + B a : b | 31 32 , c 34 36 40

† Remember the restrictions for the coordinates of this point in Table 3.



jg01j � j36j; jg02j � j39j ¼ j34j; jg03j> j36j> jcj: ð60Þ

[The least ‘favourable’ alternative (see Remarks 2.5) is indi-

cated in diagram (58) by filled circles, �.] From (59) and (60) it

follows that �(T) > �(T0), which we shall write in short as T10 >

0.

Secondly let T be of the subtype T11. Then the inequalities

(59) remain whereas (60) changes to

jr01j � jcj; jg
0
1j � j36j; jg02j � j39j ¼ j34j; ð61Þ

which leads to (57); in short T11 � 0. [The ‘worst’ possibility is

indicated in (58) by open circles, *.]

Finally, if T is of the subtype T12 the inequalities (59) are

kept again and instead of (60) we have now

jr01j � jcj; jr
0
2j � j34j; jg01j � j36j

[see the crosses 
 in (58)]. The inequality (57) is true.

Summarizing we can write in short for the type T1
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Table 6
Description of the 21 subtypes Tij.

a01 b01 b02 b03 r01 r02 g01 g02 g03 g04 g05 g06

T10 * * * * * *

T11 * * * * * *

T12 * * * * * *

T20 * * * * * *

T21 * * * * * *

T22 * * * * * *

T30 * * * * * *

T31 * * * * * *

T32 * * * * * *

T40 * * * * * *

T41 * * * * * *

T42 * * * * * *

T50 * * * * * *

T51 * * * * * *

T52 * * * * * *

T60 * * * * * *

T61 * * * * * *

T62 * * * * * *

T70 * * * * * *

T71 * * * * * *

T72 * * * * * *

Table 7
Brief notation of some abstract tetrahedra with vectors lying in their
edges.

Symbol Tetrahedron Vectors in its edges

51 ha, b, ci a b c 32 34 36
52 ha, b, �ci a b c 32 33 35
53 ha, �b, ci a b c 31 34 35
54 h�a, b, ci a b c 31 33 36
55 ha, b, a + ci a b c 32 33 39
56 ha, b, a � ci a b c 32 34 38
57 ha, �b, a + ci a b c 31 33 37
58 ha, b, b + ci a b c 32 35 38
59 ha, b, b � ci a b c 32 36 39
60 h�a, b, b + ci a b c 31 35 37
61 ha, c, a + bi a b c 31 34 40
62 ha, c, b + ci a b c 34 35 38
63 ha, c, �b + ci a b c 34 36 40
64 h�a, c, b + ci a b c 33 35 37
65 hb, c, a + bi a b c 31 36 40
66 hb, c, a + ci a b c 33 36 39
67 ha, b, �a � b + ci a b 32 34 36 40

Figure 7
Definition of the seven types of lattice tetrahedra according to Lemma
2.22.



T10 > 0; T11 � 0; T12 � 0: ð62Þ

In the same way all remaining types Ti (2 � i � 7) can be

treated. It turns out that in all these cases we get sharp

inequalities

Tij > 0 for 2 � i � 7; 0 � j � 2: ð63Þ

Thus we are justified in making the following proposition:

Proposition 2.28. On the condition (56) the abstract tetra-

hedron ha, b, ci is a minitetrahedron of L.

2.7. All minitetrahedra

In this section we continue Example 2.27. We know already

that T0 2 ha; b; ci is a minitetrahedron of L. Now let T 0 be an

arbitrary minitetrahedron in a standard description so that

�ðT 0Þ ¼ �ðT0Þ: ð64Þ

From (62) and (63) it follows that T 0 must be either of the

subtype T11 or T12.

First let T 0 be of the subtype T11. The relations (64), (59)

and (61) give

ðja01j � jajÞ þ ðjb
0
1j � jbjÞ þ ðb

0
2j � j32jÞ þ ðjr01j � jcjÞ

þ ðjg01j � j36jÞ þ ðjg02j � j34jÞ ¼ 0;

where any expression in parentheses is non-negative. Thus it is

actually zero. Hence

a01 ¼ a; fb01; b02g ¼ fb; 32g; ð65Þ

r01 ¼ c; fg01; g02g ¼ f36; 39g; ð66Þ

according to Definition 2.4. Thus T 0 must have in its edges the

vectors

a; b; 32; c; 36; 39

which admits only the abstract tetrahedron 59 (see Lemma

2.26 and Table 7).

Secondly let T 0 be of the subtype T12. This time we get in a

similar way (65) and

r01 ¼ c; r02 2 f33; 34g; g01 2 f36; 39g:

Thus in the edges of T 0 there must lie either the vectors

a; b; 32; c; 33; 36 ð67Þ

or

a; b; 32; c; 33; 39 ð68Þ

or

a; b; 32; c; 34; 36 ð69Þ

or

a; b; 32; c; 34; 39: ð70Þ

In any case T 0 is an auxiliary tetrahedron and we can use

Lemma 2.26 and Table 7. They show that the vectors (68) and

(69) lead to the abstract tetrahedra 55 and 51 whereas (67)

and (70) can lie in edges of no tetrahedron. Summarizing, we

get the following proposition:

Proposition 2.29. On the conditions (56) the lattice L has

exactly three abstract minitetrahedra, namely

51 ¼ ha; b; ci; 55 ¼ ha; b; aþ ci; 59 ¼ ha; b; b� ci:

ð71Þ

2.8. Uniqueness and ambiguity

Here we conclude Example 2.27. The explicit distribution of

vectors lying in the edges of the tetrahedra (71) is demon-

strated in the first row of Fig. 8. Substituting these vectors by

the numbers of their ‘levels’ in diagram (58) (which is done in

the second row of Fig. 8) we can immediately see which of the

tetrahedra (71) are mutually congruent and which are not.

Thus we can conclude:

Proposition 2.30. On the conditions (56) the abstract tetra-

hedra ha; b; ci and ha; b; aþ ci are congruent, but are not

congruent with ha; b; b� ci.

2.9. Completing the main proof

Repeating the procedure described in xx2.6, 2.7 and 2.8 we

can – for any � 2 � – ascertain not only all minitetrahedra of

L but also their potential mutual congruence. [The analogy

with Example 2.27 is close. A smaller complication occurs only

in the case

	ðC ¼ Aþ BÞ : a : b j c 31 32 34 36 40:

Here, between the sequences of vectors corresponding to the

sequences (67), (68), (69) and (70) in Example 2.27 there

appear two sequences, namely

a; b; 31; 34; 36; 40 ð72Þ

and

a; b; 32; 34; 36; 40; ð73Þ
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Congruence of minitetrahedra in Example 2.27.



lacking the vector c. Therefore we cannot use Lemma 2.26 and

Table 7 as we did in x2.7. It is left to the reader to prove

directly that (73) leads to 67 ¼ ha; b;�a� bþ ci while (72)

describes no tetrahedron.] Consequently we can divide the set

� into two classes, �u when the minitetrahedron of L is

unique and �a when it is ambiguous.

The set �a is described with all necessary details in Table 8.

From this table the proofs of most theorems and propositions

in x1.3 unfold. The set �u is, of course, a complement of �a to

� but the minitetrahedra belonging to the particular points �
2 �u are not given explicitly in this paper.

The proof of Theorem 1.5 follows immediately from Table

8. Before starting the proof of Theorem 1.6 it is perhaps best to

illustrate the set �a. This is done – although with �a divided

into three parts – in Figs. 3, 4 and 5. From these figures the

conditions (i), (ii), (iii) in Theorem 1.6 follow. More details are

in Table 1, which is partly a consequence of Table 8, partly

must be completed directly.

Proposition 1.7 follows from Table 8; Proposition 1.8 needs

some complementary work concerning the points from �u.

Theorem 1.9: Notice the way in which in x2.7 the mini-

tetrahedra of L are generated from the first already known

minitetrahedron.

As far as Theorem 1.10 is concerned, it is sufficient to

realize that the inequality (57) in x2.6 was being proved by

proving inequalities between separate pairs of terms and that

p < q means the same as p� < q� for all positive real numbers p,

q, �.

For proving Theorem 1.12 the material from Gruber (1978)

is very useful.

Thus all assertions in x1.3 may be considered proved.

3. Conclusion and outlook

The author hopes to find a successor who will complete the

whole problem by solving it also in the negative region

aþ bþ c ¼ min; b � c< 0; a � c< 0; a � b< 0:

A few preliminary probes show that surprising results may be

expected. For example, the set �� (defined in an analogous

way to � in Notation 2.1) is divided into regions (indicating

particular minitetrahedra) quite differently to � in Fig. 6. Its

division resembles more a weathercock with a threefold axis

going through ��. This suggests a possibility of thrice

ambiguous minitetrahedra. That they really occur confirms the

following example:

Example 3.1. Let the basis a, b, c of the lattice L fulfil

a2 b2 c2

2b � c 2a � c 2a � b

� �
¼

6 9 12

�7 �4 �1

� �
:

Then the minitetrahedron of the lattice L is thrice ambiguous.

Hint. Having proved that any of the vectors

�a; �b;�c; �31; �33; �35; �37

is shorter than any of the remaining nonzero lattice vectors of

L, we construct the abstract tetrahedra

ha;�b; aþ ci; h�a; b; bþ ci; h�a; c; bþ ci:
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Table 8
The set �a of all ambiguity points with the corresponding minitetrahedra.

Points Condition Minitetrahedra

M B < C < A + B 51 6¼ 63
N A < C < A + B 51 61 6¼ 63
P B < C < A + B 51 65 6¼ 63

 A < B 51 55 6¼ 59
	 C = A + B 51 61 65 67 6¼ 63
H
 A < B 51 6¼ 59
MN A < C < A + B 51 6¼ 63
MP B < C < A + B 51 6¼ 63
NP B < C < A + B 51 6¼ 63
N� A < B = C 51 6¼ 63
�� 51 6¼ 56
�� A = B 51 6¼ 59
�� A = C 51 6¼ 63
�
 A < B 51 6¼ 59
F �� 51 6¼ 56
H�� A = B 51 6¼ 59
H�
 A < B 51 6¼ 59
MNP B < C < A + B 51 6¼ 63
MN� A < B = C 51 6¼ 63
M�� A = C 51 6¼ 63


